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Basic Definitions

 Boolean Algebra defined with a set of elements, a set of 

operators and a number of axioms or postulates (البديهيات)

.(المسلمات)

 A set if a collection of objects having a common property

Elements

x is an element of set S

* Binary operator and 

result c of operation  on 

a and b is an element of 

set S

y is not an element of set S



Basic Definitions

1. Closure: A set S is closed with respect to a binary operator 

if, for every pair of elements of S, the binary operator 

specifies a rule for obtaining a unique element of S.

2. Associative law: (x*y)*z=x*(y*z) for all z, y, z ЄS.

3. Commutative law: x*y=y*x

4. Identity Element: e*x=x*e=x

5. Inverse: A set S having the identity element e with respect to 

binary operator * is said to have an inverse whenever, for 

every xЄS, there exists an element y such that x*y=e

6. Distributive law: If * and . are binary operators on S, * is said 

to be distributive over .  whenever x*(y.z)=(x*y).(x*z)



Axiomatic Definition of Boolean Algebra

1. (a) The structure is closed with respect to +

(b) The structure is closed with respect to .

2. (a) The element 0 is an identity element with respect to +

(b) The element 1 is an identity element with respect to .

3. (a) The structure is commutative with respect to +

(b) The structure is commutative with respect to .

4. (a) The operator . is distributive over +

(b) The operator + is distributive over .

5. For every element xЄB, there exists an element x’ЄB called the 

complement of x such that 

(a) x+x’=1 and 

(b) x.x’=0

6. There exist at least two elements x, yЄB such that x≠y

Boolean algebra is an algebraic structure defined by a set of 

elements, B, together with binary operators (+) and (.)



Two-valued Boolean Algebra

x y x.y

0 0 0

0 1 0

1 0 0

1 1 1

x y x+y

0 0 0

0 1 1

1 0 1

1 1 1

x x’

0 1

1 0

Defined on a set of two elements



Two-valued Boolean Algebra

x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

y+z x.(y+z)

0 0

1 0

1 0

1 0

0 0

1 1

1 1

1 1

x.y x.z (x.y)+(x.z)

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 1 1

1 0 1

1 1 1



Duality Principle

 The dual of a Boolean expression can be obtained by:

 Interchanging AND (·) and OR (+) operators

 Interchanging 0's and 1's

 Example: the dual of 𝑥(𝑦 + 𝑧′) is 𝑥 + 𝑦𝑧′

 The complement operator does not change

 The properties of Boolean algebra appear in dual pairs

 If a property is proven to be true then its dual is also true

Property Dual Property

Identity 𝑥 + 0 = 𝑥 𝑥 · 1 = 𝑥

Complement 𝑥 + 𝑥′ = 1 𝑥 · 𝑥′ = 0

Distributive 𝑥 (𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧 𝑥 + 𝑦𝑧 = (𝑥 + 𝑦)(𝑥 + 𝑧)



Basic Theorems



Theorem 1(a)

thus

Distributing + over . gives in general 

but



Theorem 1(b)

It can be proved by duality of Theorem 1(a)



Theorem 2(a)



Theorem 2(b)

By duality of Theorem 2(a)



Theorem 3

and

Both equations define the complement

The complement of is and is also 

Since the complement is unique



Theorem 6(a) Absorption



Theorem 6(b) Absorption

By duality of Theorem 6(a)



Theorem 6(a) Absorption

x y

0 0

0 1

1 0

1 1

xy x+xy

0 0

0 0

0 1

1 1

Proof by truth table



DeMorgan's Theorem

 (𝑥 + 𝑦)′ = 𝑥′ 𝑦′

 (𝑥 𝑦)′ = 𝑥′ + 𝑦′

x y x' y' x+y (x+y)' x'y' x y (x y)' x'+ y'

0 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 0 0 1 1

1 0 0 1 1 0 0 0 1 1

1 1 0 0 1 0 0 1 0 0

Can be verified

Using a Truth Table

Identical Identical

 Generalized DeMorgan's Theorem:

 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛
′ = 𝑥1

′ ∙ 𝑥2
′ ∙ ⋯ ∙ 𝑥𝑛

′

 𝑥1 ∙ 𝑥2 ∙ ⋯ ∙ 𝑥𝑛
′ = 𝑥1

′ + 𝑥2
′ + ⋯+ 𝑥𝑛

′



Boolean Functions

 Boolean functions are described by expressions that consist of:

 Boolean variables, such as: 𝑥, 𝑦, etc.

 Boolean constants: 0 and 1

 Boolean operators: AND (·), OR (+), NOT (')

 Parentheses, which can be nested

 Example: 𝑓 = 𝑥 𝑦 + 𝑤′𝑧

 The dot operator is implicit and need not be written

 Operator precedence: to avoid ambiguity in expressions

 Expressions within parentheses should be evaluated first

 The NOT (') operator should be evaluated second

 The AND (·) operator should be evaluated third

 The OR (+) operator should be evaluated last



Truth Table

 A truth table can represent a Boolean function

 List all possible combinations of 0's and 1's assigned to variables

 If n variables then 2n rows



Boolean functions

Transform the algebraic equation of F1 to a circuit 

diagram using logic gates

FIGURE 2.1 Gate implementation of F1 = x + y’z



Boolean functions

Transform the algebraic equation of F2 to a circuit 

diagram using logic gates



Algebraic manipulation (معالجة)

Example 1

Example 2

Example 3

Literal: A single variable within a term that may be 
complemented or not. 

Use Boolean Algebra to simplify Boolean functions to produce 
simpler circuits (minimum number of literals)

By duality of Consensus Theorem

Example 5



Consensus Theorem

 Prove that: 𝑥𝑦 + 𝑥′𝑧 + 𝑦𝑧 = 𝑥𝑦 + 𝑥′𝑧 (consensus theorem)

 Proof: 𝑥𝑦 + 𝑥′𝑧 + 𝑦𝑧

= 𝑥𝑦 + 𝑥′𝑧 + 1 · 𝑦𝑧 𝑦𝑧 = 1 · 𝑦𝑧

= 𝑥𝑦 + 𝑥′𝑧 + (𝑥 + 𝑥′)𝑦𝑧 1 = (𝑥 + 𝑥′)

= 𝑥𝑦 + 𝑥′𝑧 + 𝑥𝑦𝑧 + 𝑥′𝑦𝑧 Distributive · over +

= 𝑥𝑦 + 𝑥𝑦𝑧 + 𝑥′𝑧 + 𝑥′𝑦𝑧 Associative commutative +

= 𝑥𝑦 · 1 + 𝑥𝑦𝑧 + 𝑥′𝑧 · 1 + 𝑥′𝑧𝑦 𝑥𝑦 = 𝑥𝑦 · 1, 𝑥′𝑦𝑧 = 𝑥′𝑧𝑦

= 𝑥𝑦(1 + 𝑧) + 𝑥′𝑧(1 + 𝑦) Distributive · over +

= 𝑥𝑦 · 1 + 𝑥′𝑧 · 1 1 + 𝑧 = 1, 1 + 𝑦 = 1

= 𝑥𝑦 + 𝑥′𝑧 𝑥𝑦 · 1 = 𝑥𝑦, 𝑥′𝑧 · 1 = 𝑥′𝑧



Boolean functions

Compare the two implementations

FIGURE 2.2 Implementation of Boolean function F2 with gates



Complementing Boolean Functions

 What is the complement of 𝑓 = 𝑥′𝑦𝑧′ + 𝑥𝑦′𝑧′ ?

 Use DeMorgan's Theorem:

 Complement each variable and constant

 Interchange AND and OR operators

 So, what is the complement of 𝑓 = 𝑥′𝑦𝑧′ + 𝑥𝑦′𝑧′ ?

Answer: 𝑓′ = (𝑥 + 𝑦′ + 𝑧)(𝑥′ + 𝑦 + 𝑧)

 Example 2: Complement 𝑔 = (𝑎′ + 𝑏𝑐)𝑑′ + 𝑒

 Answer: 𝑔′ = (𝑎(𝑏′ + 𝑐′) + 𝑑)𝑒′



Complement of a function

Find the complement of the following functions

= 𝒙′ + 𝒚𝒛′ + 𝒚′𝒛



Complement of a function

Find the complement of the following functions by taking 

their duals and complementing each literal

The dual

Complement each literal

The dual

Complement each literal



Simplification Example



Simplification Example



Canonical Forms

 Minterms and Maxterms

 Sum-of-Minterm (SOM) Canonical Form

 Product-of-Maxterm (POM) Canonical Form

 Representation of Complements of Functions

 Conversions between Representations



Combinational Circuit

 A combinational circuit is a block of logic gates having:

𝑛 inputs: 𝑥1, 𝑥2, … , 𝑥𝑛

𝑚 outputs: 𝑓1, 𝑓2, … , 𝑓𝑚

 Each output is a function of the input variables

 Each output is determined from present combination of inputs

 Combination circuit performs operation specified by logic gates



Combinational

Circuit



𝑛 inputs 𝑚 outputs



Example of a Simple Combinational Circuit

 The above circuit has:

 Three inputs: 𝑥, 𝑦, and 𝑧

 Two outputs: 𝑓 and 𝑔

 What are the logic expressions of 𝑓 and 𝑔 ?

 Answer: 𝑓 = 𝑥𝑦 + 𝑧′

𝑔 = 𝑥𝑦 + 𝑦𝑧

𝑥

𝑦 𝑓

𝑔

𝑧



From Truth Tables to Gate Implementation

 Given the truth table of a Boolean function 𝑓, how do we 

implement the truth table using logic gates?

Truth Table

x y z f

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

What is the logic expression of 𝑓?

What is the gate implementation of 𝑓?

To answer these questions, we need 

to define Minterms and Maxterms



Minterms and Maxterms

 Minterms are AND terms with every variable present in either 

true or complement form

 Maxterms are OR terms with every variable present in either 

true or complement form

Minterms and Maxterms for 2 variables 𝑥 and 𝑦

 For n variables, there are 2n Minterms and Maxterms

x y index Minterm Maxterm

0 0 0 𝑚0 = 𝑥′𝑦′ 𝑀0 = 𝑥 + 𝑦

0 1 1 𝑚1 = 𝑥′𝑦 𝑀1 = 𝑥 + 𝑦′

1 0 2 𝑚2 = 𝑥𝑦′ 𝑀2 = 𝑥′ + 𝑦

1 1 3 𝑚3 = 𝑥𝑦 𝑀3 = 𝑥′ + 𝑦′



Minterms and Maxterms for 3 Variables

Maxterm 𝑀𝑖 is the complement of Minterm 𝑚𝑖

𝑀𝑖 = 𝑚𝑖′ and  𝑚𝑖 = 𝑀𝑖′

x y z index Minterm Maxterm

0 0 0 0 𝑚0 = 𝑥′𝑦′𝑧′ 𝑀0 = 𝑥 + 𝑦 + 𝑧

0 0 1 1 𝑚1 = 𝑥′𝑦′𝑧 𝑀1 = 𝑥 + 𝑦 + 𝑧′

0 1 0 2 𝑚2 = 𝑥′𝑦𝑧′ 𝑀2 = 𝑥 + 𝑦′ + 𝑧

0 1 1 3 𝑚3 = 𝑥′𝑦𝑧 𝑀3 = 𝑥 + 𝑦′ + 𝑧′

1 0 0 4 𝑚4 = 𝑥𝑦′𝑧′ 𝑀4 = 𝑥′ + 𝑦 + 𝑧

1 0 1 5 𝑚5 = 𝑥𝑦′𝑧 𝑀5 = 𝑥′ + 𝑦 + 𝑧′

1 1 0 6 𝑚6 = 𝑥𝑦𝑧′ 𝑀6 = 𝑥′ + 𝑦′ + 𝑧

1 1 1 7 𝑚7 = 𝑥𝑦𝑧 𝑀7 = 𝑥′ + 𝑦′ + 𝑧′



Purpose of the Index

 Minterms and Maxterms are designated with an index

 The index for the Minterm or Maxterm, expressed as a 

binary number, is used to determine whether the variable 

is shown in the true or complemented form

 For Minterms:

 ‘1’ means the variable is Not Complemented

 ‘0’ means  the variable is Complemented

 For Maxterms:

 ‘0’ means  the variable is Not Complemented

 ‘1’ means the variable is Complemented



Sum-Of-Minterms (SOM) Canonical Form

Sum of Minterm entries 

that evaluate to ‘1’

Truth Table

x y z f Minterm

0 0 0 0

0 0 1 0

0 1 0 1 𝑚2 = 𝑥′𝑦𝑧′

0 1 1 1 𝑚3 = 𝑥′𝑦𝑧

1 0 0 0

1 0 1 1 𝑚5 = 𝑥𝑦′𝑧

1 1 0 0

1 1 1 1 𝑚7 = 𝑥𝑦𝑧

Focus on the ‘1’ entries 

𝑓 = 𝑚2 +𝑚3 +𝑚5 +𝑚7

𝑓 =෍ 2, 3, 5, 7

𝑓 = 𝑥′𝑦𝑧′ + 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧



Examples of Sum-Of-Minterms

 𝑓 𝑎, 𝑏, 𝑐, 𝑑 = σ(2, 3, 6, 10, 11)

 𝑓 𝑎, 𝑏, 𝑐, 𝑑 = 𝑚2 +𝑚3 +𝑚6 +𝑚10 +𝑚11

 𝑓 𝑎, 𝑏, 𝑐, 𝑑 = 𝑎′𝑏′𝑐𝑑′ + 𝑎′𝑏′𝑐𝑑 + 𝑎′𝑏𝑐𝑑′ + 𝑎𝑏′𝑐𝑑′ + 𝑎𝑏′𝑐𝑑

 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = σ(0, 1, 12, 15)

 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = 𝑚0 +𝑚1 +𝑚12 +𝑚15

 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = 𝑎′𝑏′𝑐′𝑑′ + 𝑎′𝑏′𝑐′𝑑 + 𝑎𝑏𝑐′𝑑′ + 𝑎𝑏𝑐𝑑



Product-Of-Maxterms (POM) Canonical Form

Truth Table

x y z f Maxterm

0 0 0 0 𝑀0 = 𝑥 + 𝑦 + 𝑧

0 0 1 0 𝑀1 = 𝑥 + 𝑦 + 𝑧′

0 1 0 1

0 1 1 1

1 0 0 0 𝑀4 = 𝑥′ + 𝑦 + 𝑧

1 0 1 1

1 1 0 0 𝑀6 = 𝑥′ + 𝑦′ + 𝑧

1 1 1 1

Product of Maxterm entries 

that evaluate to ‘0’

Focus on the ‘0’ entries 

𝑓 = 𝑀0 · 𝑀1 · 𝑀4 · 𝑀6

𝑓 =ෑ 0, 1, 4, 6

𝑓 = (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧′)(𝑥′ + 𝑦 + 𝑧)(𝑥′ + 𝑦′ + 𝑧)



Examples of Product-Of-Maxterms

 𝑓 𝑎, 𝑏, 𝑐, 𝑑 = ς(1, 3, 11)

 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = 𝑀1 ∙ 𝑀3 ∙ 𝑀11

 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = 𝑎 + 𝑏 + 𝑐 + 𝑑′ 𝑎 + 𝑏 + 𝑐′ + 𝑑′ (𝑎′ + 𝑏 + 𝑐′ + 𝑑′)

 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = ς(0, 5, 13)

 𝑔(𝑎, 𝑏, 𝑐, 𝑑) = 𝑀0 ∙ 𝑀5 ∙ 𝑀13

 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = 𝑎 + 𝑏 + 𝑐 + 𝑑 𝑎 + 𝑏′ + 𝑐 + 𝑑′ (𝑎′ + 𝑏′ + 𝑐 + 𝑑′)



Conversions between Canonical Forms

 The same Boolean function 𝑓 can be expressed in two ways:

 Sum-of-Minterms 𝑓 = 𝑚0 +𝑚2 +𝑚3 +𝑚5 +𝑚7 = σ(0, 2, 3, 5, 7)

 Product-of-Maxterms 𝑓 = 𝑀1 ∙ 𝑀4 ∙ 𝑀6 = ς(1, 4, 6)

x y z f Minterms Maxterms

0 0 0 1 𝑚0 = 𝑥′𝑦′𝑧′

0 0 1 0 𝑀1 = 𝑥 + 𝑦 + 𝑧′

0 1 0 1 𝑚2 = 𝑥′𝑦𝑧′

0 1 1 1 𝑚3 = 𝑥′𝑦𝑧

1 0 0 0 𝑀4 = 𝑥′ + 𝑦 + 𝑧

1 0 1 1 𝑚5 = 𝑥𝑦′𝑧

1 1 0 0 𝑀6 = 𝑥′ + 𝑦′ + 𝑧

1 1 1 1 𝑚7 = 𝑥𝑦𝑧

To convert from one canonical 

form to another, interchange 

the symbols  and  and list 

those numbers missing from 

the original form.

Truth Table



Function Complement

Given a Boolean function 𝑓

𝑓(𝑥, 𝑦, 𝑧) =෍ 0, 2, 3, 5, 7 =ෑ(1, 4, 6)

Then, the complement 𝑓′ of function 𝑓

𝑓′(𝑥, 𝑦, 𝑧) =ෑ 0, 2, 3, 5, 7 =෍(1, 4, 6)

x y z f f'

0 0 0 1 0

0 0 1 0 1

0 1 0 1 0

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 0 1

1 1 1 1 0

The complement of a function expressed by a 

Sum of Minterms is the Product of Maxterms 

with the same indices. Interchange the symbols 

 and , but keep the same list of indices.

Truth Table



Algebraic Conversion to Sum-of-Minterms

 Expand all terms first to explicitly list all minterms

 AND any term missing a variable v with (v + v)

 Example 1: f = x + x y (2 variables)

f = x (y + y) + x y

f = x y + x y + x y

f = m3 + m2 + m0 = ∑(0, 2, 3)

 Example 2: g = a + b c (3 variables)

g = a (b + b)(c + c) + (a + a) b c

g = a b c + a b c + a b c + a b c + a b c + a b c

g = a b c + a b c + a b c + a b c + a b c

g = m1 + m4 + m5 + m6 + m7 = ∑ (1, 4, 5, 6, 7)



Algebraic Conversion to Product-of-Maxterms

 Expand all terms first to explicitly list all maxterms

 OR any term missing a variable v with v · v

 Example 1: f = x + x y (2 variables)

Apply 2nd distributive law:

f = (x + x) (x + y) = 1 · (x + y) = (x + y) = M1

 Example 2: g = a c + b c + a b (3 variables)

g = (a c + b c + a) (a c + b c + b) (distributive)

g = (c + b c + a) (a c + c + b) (x + x y = x + y)

g = (c + b + a) (a + c + b) (x + x y = x + y)

g = (a + b + c) (a + b + c) = M5 . M2 = ∏ (2, 5)



Summary of Minterms and Maxterms

 There are 2n Minterms and Maxterms for Boolean functions with 

n variables, indexed from 0 to 2n – 1

 Minterms correspond to the 1-entries of the function

 Maxterms correspond to the 0-entries of the function

 Any Boolean function can be expressed as a Sum-of-Minterms 

and as a Product-of-Maxterms

 For a Boolean function, given the list of Minterm indices one can 

determine the list of Maxterms indices (and vice versa)

 The complement of a Sum-of-Minterms is a Product-of-Maxterms 

with the same indices (and vice versa)



Sum-of-Products and Products-of-Sums

 Canonical forms contain a larger number of literals

 Because the Minterms (and Maxterms) must contain, by definition, all 

the variables either complemented or not

 Another way to express Boolean functions is in standard form

 Two standard forms: Sum-of-Products and Product-of -Sums

 Sum of Products (SOP)

 Boolean expression is the ORing (sum) of AND terms (products)

 Examples: 𝑓1 = 𝑥𝑦′ + 𝑥𝑧 𝑓2 = 𝑦 + 𝑥𝑦′𝑧

 Products of Sums (POS)

 Boolean expression is the ANDing (product) of OR terms (sums)

 Examples: 𝑓3 = (𝑥 + 𝑧)(𝑥′ + 𝑦′) 𝑓4 = 𝑥(𝑥′ + 𝑦′ + 𝑧)



 Sum of Products (SOP)

ABCCBACBACBAF 

AC

BBAC



 )(

CB

AACB



 )(

BA

BA

CCBA







)1(

)(

)()()( BBACCCBAAACBF 

ACBACBF 
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Standard Forms



 Product of Sums (POS)

)( AACB 

)( BBCA 

)( CCBA 

)()()( AACBCCBABBCAF 

CBBACAF 

CABBCACBACBAF 

))()(( CBBACAF 
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Standard Forms



Two-Level Gate Implementation

𝑓1 = 𝑥𝑦′ + 𝑥𝑧

𝑥

𝑦′
𝑓1

𝑥

𝑧

𝑓2 = 𝑦 + 𝑥𝑦′𝑧

𝑦

𝑦′

𝑓2𝑥

𝑧 3-input AND gateAND-OR

implementations

𝑓3 = (𝑥 + 𝑧)(𝑥′ + 𝑦′)

𝑥

𝑧
𝑓3

𝑥′

𝑦′

𝑓4 = 𝑥(𝑥′ + 𝑦′ + 𝑧)

𝑥

𝑓4𝑥′
𝑦′
𝑧 3-input OR gateOR-AND

implementations



Two-Level vs. Three-Level Implementation

 ℎ = 𝑎𝑏 + 𝑐𝑑 + 𝑐𝑒 (6 literals) is a sum-of-products

 ℎ may also be written as: ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒) (5 literals)

 However, ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒) is a non-standard form

 ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒) is not a sum-of-products nor a product-of-sums

2-level implementation

ℎ = 𝑎𝑏 + 𝑐𝑑 + 𝑐𝑒

3-level implementation

ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒)

𝑎

𝑏

ℎ
𝑐

𝑑

𝑐

𝑒 3-input OR gate

𝑎

𝑏

ℎ𝑐

𝑑

𝑒



Additional Logic Gates and Symbols

 Why?

 Low cost implementation

 Useful in implementing Boolean functions

 Factors to be weighed in considering the construction of other 

types of logic gates are 

 The feasibility and economy of producing the gate with physical 

components, 

 The possibility of extending the gate to more than two inputs, 

 The basic properties of the binary operator, such as commutativity and 

associativity, 

 The ability of the gate to implement Boolean functions alone or in 

conjunction with other gates.



Additional Logic Gates and Symbols

𝑥

𝑦
𝑥 · 𝑦

AND gate

𝑥

𝑦
𝑥 + 𝑦

OR gate

𝑥′𝑥

NOT gate (inverter)

𝑥

𝑦
𝑥 · 𝑦 ′

NAND gate

𝑥

𝑦
(𝑥 + 𝑦)′

NOR gate

𝑥

𝑦
𝑥 ⊕ 𝑦

XOR gate

𝑥

𝑦
(𝑥 ⊕ 𝑦)′

XNOR gate

𝑥𝑥

Buffer

𝑓𝑥

3-state gate

𝑐



NAND Gate

 The NAND gate has the following symbol and truth table

 NAND represents NOT AND

 The small bubble circle represents the invert function

 NAND gate is implemented efficiently in CMOS technology

 In terms of chip area and speed

x y NAND

0  0 1

0  1 1

1  0 1

1  1 0

𝑥
𝑦

𝑥 · 𝑦 ′ = 𝑥′ + 𝑦′

NAND gate 𝑥
𝑦

𝑥′ + 𝑦′

Another symbol for NAND



NOR Gate

 The NOR gate has the following symbol and truth table

 NOR represents NOT OR

 The small bubble circle represents the invert function

 NOR gate is implemented efficiently in CMOS technology

 In terms of chip area and speed

x y NOR

0  0 1

0  1 0

1  0 0

1  1 0

𝑥
𝑦

𝑥 + 𝑦 ′ = 𝑥′ · 𝑦′

NOR gate 𝑥
𝑦

𝑥′ · 𝑦′

Another symbol for NOR



Non-Associative NAND / NOR Operations
 Unlike AND, NAND operation is NOT associative

(𝑥 NAND 𝑦) NAND 𝑧 ≠ 𝑥 NAND (𝑦 NAND 𝑧)

(𝑥 NAND 𝑦) NAND 𝑧 = ((𝑥𝑦)′𝑧)′ = ((𝑥′ + 𝑦′)𝑧)′ = 𝑥𝑦 + 𝑧′

𝑥 NAND (𝑦 NAND 𝑧) = (𝑥(𝑦𝑧)′)′ = (𝑥(𝑦′ + 𝑧′))′ = 𝑥′ + 𝑦𝑧

 Unlike OR, NOR operation is NOT associative

(𝑥 NOR 𝑦) NOR 𝑧 ≠ 𝑥 NOR (𝑦 NOR 𝑧)

(𝑥 NOR 𝑦) NOR 𝑧 = 𝑥 + 𝑦 ′ + 𝑧
′
= 𝑥′𝑦′ + 𝑧

′
= (𝑥 + 𝑦)𝑧′

𝑥 NOR (𝑦 NOR 𝑧) = 𝑥 + 𝑦 + 𝑧 ′ ′ = 𝑥 + 𝑦′𝑧′
′
= 𝑥′(𝑦 + 𝑧)



Extension to multiple inputs

Demonstrating the nonassociativity of the NOR operator:



x y z  x  y z 



Multiple-Input NAND / NOR Gates

NAND/NOR gates can have multiple inputs, similar to AND/OR gates

𝑥

𝑦
𝑥 · 𝑦 ′

2-input NAND gate

𝑥

𝑧
𝑥 · 𝑦 · 𝑧 ′

3-input NAND gate

𝑦

𝑤

𝑧
𝑤 · 𝑥 · 𝑦 · 𝑧 ′

4-input NAND gate

𝑦
𝑥

𝑥

𝑦
𝑥 + 𝑦 ′

2-input NOR gate

𝑥

𝑧
𝑥 + 𝑦 + 𝑧 ′

3-input NOR gate

𝑦

𝑤

𝑧
𝑤 + 𝑥 + 𝑦 + 𝑧 ′

4-input NOR gate

𝑦
𝑥

Note: a 3-input NAND is a single gate, NOT a combination of two 2-input gates. 

The same can be said about other multiple-input NAND/NOR gates.



Extension to multiple inputs

Multiple‐input and cascaded NOR and NAND gates



Exclusive OR / Exclusive NOR

 Exclusive OR (XOR) is an important Boolean operation used 

extensively in logic circuits

 Exclusive NOR (XNOR) is the complement of XOR

𝑥
𝑦

𝑥 ⨁ 𝑦

XOR gate

𝑥
𝑦

(𝑥 ⨁ 𝑦)′

XNOR gate

x y XOR

0  0 0

0  1 1

1  0 1

1  1 0

x y XNOR

0  0 1

0  1 0

1  0 0

1  1 1

XNOR is also known 

as equivalence



XOR / XNOR Functions

 The XOR function is: 𝑥 ⨁ 𝑦 = 𝑥𝑦′ + 𝑥′𝑦

 The XNOR function is: (𝑥 ⨁ 𝑦)′ = 𝑥𝑦 + 𝑥′𝑦′

 XOR and XNOR gates are complex

 Can be implemented as a true gate, or by

 Interconnecting other gate types

 XOR and XNOR gates do not exist for more than two inputs

 For 3 inputs, use two XOR gates

 The cost of a 3-input XOR gate is greater than the cost of two XOR gates

 Uses for XOR and XNOR gates include:

 Adders, subtractors, multipliers, counters, incrementers, decrementers

 Parity generators and checkers



Extension to multiple inputs

Three‐input exclusive‐OR gate



Positive and Negative Logic

 Choosing the high‐level H to represent logic 1 defines a 

positive logic system

 Choosing the low‐level L to represent logic 1 defines a 

negative logic system.

 It is up to the user to decide on a positive or negative logic 

polarity.

Signal assignment and logic polarity



Positive and Negative Logic

 The conversion from positive 

logic to negative logic and vice 

versa is essentially an operation 

that changes 1’s to 0’s and 0’s to 

1’s in both the inputs and the 

output of a gate. 

 Since this operation produces 

the dual of a function, the 

change of all terminals from one 

polarity to the other results in 

taking the dual of the function.


